Industry News
Comprehensive Comparative Analysis of High-Performance Fastener Materials

This technical document provides an extensive comparison of Inconel and other high-performance fastener materials. It serves as a decision-support tool for engineers and procurement specialists selecting materials for critical applications in aerospace, energy, chemical processing, marine, and medical industries.


1. Material Composition & Classification

Material FamilySpecific GradePrimary BaseKey Alloying Elements (%)Material Class
Nickel-Based SuperalloysInconel 718Nickel (~50-55%)Cr (~17-21%), Fe (bal.), Nb+Ta (~5%), Mo (~3%), Ti (~0.8%), Al (~0.5%)Age-hardenable Ni-Cr alloy

Inconel 625Nickel (~58% min)Cr (~20-23%), Mo (~8-10%), Fe (~5% max)Solid-solution strengthened

Hastelloy C-276Nickel (~57%)Mo (~15-17%), Cr (~14.5-16.5%), Fe (~4-7%), W (~3-4.5%)Ni-Mo-Cr "C-family"

Monel K-500Nickel (~63-70%)Cu (~27-33%), Al (~2.3-3.15%), Ti (~0.35-0.85%)Age-hardenable Ni-Cu
Iron-Based SuperalloysA286Iron (~55-60%)Cr (~15%), Ni (~25%), Mo (~1.3%), Ti (~2.1%), Al (~0.2%)Precipitation-hardening Fe-Ni-Cr

Incoloy 925Iron (~44%)Ni (~42%), Cr (~21%), Mo (~3%), Ti (~2.1%)Fe-Ni-Cr superalloy
Stainless SteelsAISI 316/316LIron (~65-70%)Cr (~16-18%), Ni (~10-14%), Mo (~2-3%)Austenitic stainless

254 SMO (UNS S31254)Iron (~62%)Cr (~20%), Ni (~18%), Mo (~6.1%), Cu (~0.7%), N (~0.2%)Super-austenitic

17-4PH (630)Iron (~75%)Cr (~15-17.5%), Ni (~3-5%), Cu (~3-5%)Precipitation-hardening

15-5PHIron (~77%)Cr (~14-15.5%), Ni (~3.5-5.5%), Cu (~2.5-4.5%)Precipitation-hardening

PH 13-8 MoIron (~73%)Cr (~12.5-13.5%), Ni (~7.5-8.5%), Mo (~2-2.5%)Precipitation-hardening
Titanium AlloysTi-6Al-4V (Grade 5)Titanium (~90%)Al (~6%), V (~4%)Alpha-beta alloy

Ti-6Al-4V ELITitanium (~90%)Al (~6%), V (~4%)Extra-low interstitial
Cobalt-Based AlloysMP35NCobalt (~35%)Ni (~35%), Cr (~20%), Mo (~10%)Multi-phase strengthening
Aluminum Alloys7075-T6Aluminum (~90%)Zn (~5.6%), Mg (~2.5%), Cu (~1.6%)High-strength Al-Zn-Mg-Cu
Low-Alloy SteelsAISI 4340Iron (~95%)Cr (~0.8%), Ni (~1.8%), Mo (~0.25%)Quench & temper steel



2. Mechanical Properties Comparison

MaterialTensile Strength (MPa)Yield Strength (0.2% Offset, MPa)Elongation (%)Hardness (HRC)Fatigue Ratio*
Inconel 7181,240 - 1,3801,030 - 1,17012-2035 - 450.40-0.45
Inconel 625830 - 1,000410 - 52030-4520 - 300.35-0.40
Hastelloy C-276790 - 1,000350 - 41540-6085-95 HRB0.35-0.40
A286900 - 1,000600 - 70015-2530 - 380.40-0.45
Incoloy 925900 - 1,050550 - 70020-3025-350.35-0.40
AISI 316515 - 620205 - 31040-5020 - 300.40-0.45
254 SMO650 - 750300 - 40035-4590-100 HRB0.40-0.45
17-4PH H9001,310 - 1,3801,170 - 1,24010-1440 - 470.40-0.45
15-5PH H9001,240 - 1,3801,070 - 1,17010-1538 - 440.40-0.45
PH 13-8 Mo H9501,380 - 1,4501,240 - 1,31010-1543 - 470.40-0.45
Ti-6Al-4V900 - 1,100830 - 1,00010-1535 - 400.45-0.50
Monel K-5001,000 - 1,200690 - 86020-3025 - 350.40-0.45
MP35N1,450 - 1,6501,350 - 1,55010-2035 - 450.45-0.50
7075-T6520 - 570430 - 4807-1260-70 HRB0.30-0.35
4340 (Q&T)1,000 - 1,200850 - 1,00010-1532 - 400.45-0.50

*Fatigue Ratio = Fatigue Endurance Limit / Tensile Strength


3. Temperature Capability & Thermal Properties

MaterialContinuous Service MaxShort-Term PeakCryogenic LimitCTE (10⁻⁶/°C)Thermal Conductivity (W/m·K)
Inconel 718700°C800°C-250°C13.011.4
Inconel 625650°C980°C-250°C12.89.8
Hastelloy C-276400°C1,100°C-196°C11.210.2
A286650°C700°C-250°C16.213.7
Incoloy 925540°C700°C-196°C14.011.7
AISI 316400°C870°C-250°C16.016.3
254 SMO350°C450°C-196°C16.513.5
17-4PH290°C425°C-40°C10.818.4
15-5PH290°C425°C-40°C10.818.4
PH 13-8 Mo425°C540°C-196°C10.815.5
Ti-6Al-4V430°C480°C-250°C8.66.7
Monel K-500480°C540°C-250°C13.917.0
MP35N315°C540°C-253°C12.813.0
7075-T6120°C175°C-273°C23.6130
4340200°C400°C-40°C12.344.5

4. Corrosion Resistance Assessment

4.1 Pitting & Crevice Corrosion Resistance

MaterialPREN* ValueCritical Pitting Temp. (°C)Critical Crevice Temp. (°C)Chloride Resistance
Inconel 625~55>85>65Excellent
Hastelloy C-276~69>85>85Superior
254 SMO≥43>50>25Excellent
AISI 316~2515-250-5Good
Ti-6Al-4VN/A (TiO₂ passivation)>100>100Exceptional
Monel K-500N/A (Cu-rich)>50>40Excellent in seawater
MP35N~45>65>50Excellent
17-4PH~18<0<0Poor

*PREN = %Cr + 3.3×%Mo + 16×%N (Higher = Better Pitting Resistance)


4.2 Chemical Media Compatibility

MaterialReducing AcidsOxidizing AcidsAlkalisChloride SCCHydrogen Embrittlement
Inconel 718ExcellentExcellentExcellentExcellentSusceptible (HTHA)
Hastelloy C-276ExceptionalGoodExcellentExcellentGood resistance
AISI 316Poor-FairExcellentGoodPoorSusceptible
Ti-6Al-4VPoorExceptionalGoodImmuneSusceptible
Monel K-500ExcellentPoorExcellentExcellentSusceptible
MP35NGoodGoodExcellentExcellentGood resistance
254 SMOPoorExcellentGoodGoodGood resistance

5. Application Domains & Industry Usage

MaterialPrimary IndustriesTypical Fastener ApplicationsIndustry Standards
Inconel 718Aerospace, Oil & Gas, NuclearJet engine bolts, turbine fasteners, downhole toolsAMS 5731, ASTM A453 Gr.660
Inconel 625Marine, Chemical, Aerospaceseawater valves, scrubber bolts, exhaust systemsASTM B446, NACE MR0175
Hastelloy C-276Chemical Processing, FGDReactor agitators, chimney liners, scrubber boltsASTM B574, NACE MR0103
A286Aerospace, AutomotiveTurbine casing bolts, turbocharger fastenersASTM A453 Gr.660, AMS 5737
Incoloy 925Oil & Gas, ChemicalOCTG connectors, wellhead componentsAPI 6A CRA, NACE MR0175
AISI 316General Industry, MarineChemical plant fasteners, marine hardwareASTM A193 B8/B8M, A320
254 SMODesalination, Pulp & PaperSeawater pump bolts, bleach plant fastenersASTM A479, EN 1.4547
17-4PH/15-5PHAerospace, GeneralAircraft fittings, nuclear waste casksASTM A564 Gr.630, AMS 5643
PH 13-8 MoAerospace, NuclearLanding gear bolts, reactor componentsAMS 5629, ASTM A564 Gr.630
Ti-6Al-4VAerospace, MedicalAirframe fasteners, orthopedic implantsASTM F136, AMS 4928
Monel K-500Marine, ChemicalMarine propeller shafts, pump boltsASTM F467 (M-30H), UNS N05500
MP35NMedical, Deep SeaSurgical implants, subsea connectorsASTM F562, AMS 5844
7075-T6Aerospace, SportsAircraft structural bolts, bicycle componentsASTM B211, AMS 4045
4340Aerospace, AutomotiveLanding gear bolts, crankshaft fastenersASTM A29, AMS 6414

6. Cost Analysis & Economic Factors

6.1 Relative Cost Index (AISI 316 = 1.0)

MaterialRaw Material IndexMachining Cost FactorHeat Treatment CostTotal Cost Index
AISI 3161.01.01.01.0
43400.81.21.51.2
7075-T61.51.01.01.3
17-4PH2.01.11.21.6
A2863.01.31.52.3
254 SMO4.01.31.02.8
Ti-6Al-4V6.01.81.54.0
Incoloy 9256.01.51.54.0
Monel K-5007.01.61.84.5
Hastelloy C-2768.01.81.05.5
Inconel 6259.02.01.06.0
Inconel 71810.02.22.57.2
MP35N12.02.02.08.0


6.2 Machinability & Fabrication

MaterialMachinability Rating*ForgeabilityWeldabilityRecommended Cutting Tools
434065%ExcellentGood (preheat)Coated carbides, ceramic
AISI 31645%GoodExcellentHigh-speed steel, carbide
7075-T670%FairPoorCarbide, diamond
17-4PH45%GoodGoodCarbide, CBN
A28625%FairGoodCarbide, ceramic
Ti-6Al-4V40%PoorGoodCarbide, diamond-coated
Inconel 71815%PoorFair (post-weld HT)Ceramic, CBN, carbide
Hastelloy C-27625%PoorExcellentCarbide, careful cooling
MP35N20%PoorFairCarbide, low speeds

*Based on 1212 steel = 100%


7. Standards & Specifications

7.1 Material Specifications

MaterialBar/ Wire StandardFastener Product StandardHeat Treat StandardTesting Standard
Inconel 718AMS 5662AMS 5731, ASTM A453AMS 5663ASTM E8, E21
Inconel 625ASTM B446ASTM B446, ASME SB446AMS 5666ASTM G28, G48
Hastelloy C-276ASTM B574ASTM F468 (N10276)AMS 5754ASTM G28, G48A
A286AMS 5731ASTM A453 Gr.660AMS 5732ASTM E8, E21
AISI 316ASTM A276ASTM A193 B8/B8MAMS 2759ASTM A262, A923
254 SMOASTM A479ASTM A193 B8M (special)-ASTM A262, G48
Ti-6Al-4VASTM B348ASTM F136, AMS 4928AMS H-81200ASTM E8, E1447
Monel K-500ASTM B164ASTM F467 (M-30H)AMS 4676ASTM G28
MP35NASTM F562ASTM F467 (R30035)AMS 5844ASTM F2063


7.2 Industry-Specific Approvals

  • Aerospace: NADCAP, FAA, EASA approvals

  • Oil & Gas: NACE MR0175/MR0103, API 6A/17D

  • Nuclear: ASME III, RCC-M, KTA standards

  • Medical: ISO 13485, FDA, CE marking

  • Marine: DNV, ABS, Lloyd's Register


8. Material Selection Guidelines

8.1 Decision Matrix by Application Environment

Operating EnvironmentFirst ChoiceSecond ChoiceCost-Effective AlternativeCritical Considerations
High Temp (>600°C) + StressInconel 718Haynes 282A286Creep rupture strength
Seawater ImmersionMonel K-500Inconel 625254 SMOBiofouling, crevice corrosion
Sour Service (H₂S)Inconel 718/725Incoloy 925Super duplexNACE compliance, SSC resistance
Chemical Reducing AcidsHastelloy C-276Inconel 625ZirconiumConcentration, temperature
Cryogenic Service304/316 StainlessInconel 718Ti-6Al-4VImpact toughness at low temp
High Strength-to-WeightTi-6Al-4V7075-T6MP35NFatigue, galvanic corrosion
Medical ImplantsTi-6Al-4V ELIMP35N316LVMBiocompatibility, MRI compatibility
High Wear ApplicationsMP35NStellite 6BTool steelGalling resistance, lubrication


8.2 Failure Mode Considerations

MaterialSusceptible Failure ModesPreventive Measures
Inconel 718Stress relaxation at high temp, notch sensitivityProper heat treatment, radius design
A286σ-phase embrittlement (650-900°C exposure)Control service temperature
Titanium alloysHydrogen embrittlement, gallingSurface treatments, lubricants
Stainless steelsChloride SCC, sensitizationControl environment, proper heat treat
Aluminum alloysExfoliation corrosion, fatigueAnodizing, proper clamping
MP35NManufacturing defects, improper heat treatStrict process control

9. Sustainability & Lifecycle Considerations

9.1 Environmental Impact Metrics

MaterialRecycled Content TypicalEnergy Intensity*CO₂ Footprint (kg/kg)Critical Material Risk
Carbon Steels>85%1.01.8-2.2Low
Stainless Steels60-80%3-44.2-6.5Medium (Ni, Mo)
Aluminum Alloys>90%8-108-12Low (energy intensive)
Titanium Alloys30-60%20-2525-35High (Ti sponge)
Nickel Alloys50-70%15-2015-25High (Ni, Co)
Cobalt Alloys40-60%25-3030-40Critical (Co supply)

*MJ per kg of material produced, relative to carbon steel


9.2 Lifecycle Cost Factors

  1. Initial Cost: Material + fabrication

  2. Installation Cost: Handling, torque requirements

  3. Maintenance Cost: Inspection, replacement frequency

  4. Failure Cost: Downtime, safety incidents, environmental impact

  5. End-of-Life: Recycling value, disposal costs


10. Emerging Trends & Future Developments

10.1 Advanced Materials

  • Additive Manufacturing Alloys: Tailored compositions for 3D printing

  • Nanostructured Materials: SPD-processed ultrafine-grained alloys

  • Multi-Material Fasteners: Gradient or composite structures

  • Smart Fasteners: Embedded sensors for health monitoring

10.2 Surface Engineering

  • PVD/CVD Coatings: AlCrN, DLC, multilayer systems

  • Laser Surface Modification: Cladding, texturing, hardening

  • Electrochemical Processes: Micro-arc oxidation, plasma electrolysis

10.3 Digital Integration

  • Material Digital Twins: Simulation of performance under real conditions

  • Blockchain Traceability: Full material provenance tracking

  • AI-Driven Selection: Machine learning for optimal material choice


Conclusion & Final Recommendations

Selection Priority Checklist:

  1. Safety & Reliability: Must meet or exceed all safety factors

  2. Environmental Compatibility: Resist all corrosion mechanisms present

  3. Temperature Capability: Sufficient margin above operating temperatures

  4. Mechanical Requirements: Strength, fatigue, creep as needed

  5. Manufacturability: Can be fabricated to required tolerances

  6. Cost Effectiveness: Lowest total lifecycle cost

  7. Availability: Supply chain security and lead times

  8. Sustainability: Environmental impact and recyclability

Inconel's Unique Position:

Inconel alloys, particularly 718 and 625, remain the premium choice for applications demanding the trifecta of high temperature capability, exceptional corrosion resistance, and high strength. Their higher cost is justified when:

  • Temperatures exceed 600°C

  • Corrosive environments are severe or unpredictable

  • Failure consequences are catastrophic

  • Long service life is required with minimal maintenance

Practical Implementation Strategy:

  1. Phase 1: Thorough environment analysis and requirement definition

  2. Phase 2: Preliminary material screening using this guide

  3. Phase 3: Prototype testing in simulated service conditions

  4. Phase 4: Cost-benefit analysis of top 2-3 candidates

  5. Phase 5: Final selection with contingency planning

Final Note: No material is universally superior. The optimal choice always depends on the specific combination of mechanical, chemical, thermal, and economic requirements. When in doubt, consult with materials engineers and consider real-world testing before full-scale implementation.


021764953157030ec3db73c4849487ff7f18447ab3797c297b48e_0


Previous:No more content

Request A Quote! We'll respond as soon as possible(within 12 hours)

Submit